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Abstract. We give a short account of our new approach to study models in the
Kardar-Parisi-Zhang(KPZ) universality class by connecting them to free fermions at
positive temperature. Our ideas and methods are explained mainly for the semi-
discrete directed polymer model due to O’Connell and Yor.
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1. Introduction

Non-equilibrium statistical physics has been an important field in mathematical
physics. For systems in thermal equilibrium, there is a standard formulation using
Gibbs measure for given Hamiltonians [Rue69]. Systems far from equilibrium show rich
intriguing phenomena, which are not seen in equilibrium systems, such as dissipative
structures. Many non-equilibrium systems are formulated as stochastic interacting sys-
tems, which are stochastic processes with infinite degrees of freedom with interaction.
Foundations of such systems have been established in 1970’s and 80’s [Spi70, Lig85].
There have been accumulation of results since then [Lig99, KL99]. Recently particular
class of interacting particle systems attract special attention, which are exactly solvable.
They have connections with integrable systems [Bax82], which allow to study various
properties in detail. The subject is often called integrable probability [BP16].

One of the central objects in this field is the models in the Kardar-Parisi-Zhang(KPZ)
universality class [KPZ86, BS95], which share various non-trivial fluctuation properties.
We call them the KPZ models in this article. The name of the universality class
originates from the equation with the same name, which was introduced in 1986 by
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Kardar, Parisi and Zhang to describe interface motion [KPZ86]. There are interests for
models in general dimension, but there have been a big progress for one dimensional
case because some KPZ models in one dimension can be studied explicitly. The KPZ
equation in one dimension is the following. For the height function h = h(x, t), x ∈
R, t ∈ R+,

(1.1)
∂

∂t
h =

1

2

∂2

∂x2
h+

1

2

(
∂h

∂x

)2

+ η

where η = η(x, t) is the space time white noise. On the right hand side, the first term
represents a smoothening, the second a nonlinearity coming from vertical growth and
the last a noise from the environment. See [BS95, Cor12, Sas16].

It is often useful to apply the Cole-Hopf transformation: Z = Z(x, t) = eh(x,t). The
KPZ equation becomes

(1.2)
∂

∂t
Z =

1

2

∂2

∂x2
Z + ηZ.

From this equation, Z may be interpreted as the partition function for a directed
polymer in random environment η at a finite temperature (T > 0). As written there
is an issue of well-definedness for (1.1). It was shown in [BG97] that if one interprets
the product ηZ in (1.2) as Ito type, one can make sense of (1.1). Now there are a
few ways to define (1.1) and make sense of more general nonlinear stochastic PDEs
[Hai13, GP17, Kup16], but we don’t go into details of this aspect in this article.

As mentioned above, a striking feature of the one dimensional KPZ equation is that
it admits exact analysis. In 2010 the explicit formula for the point distribution of the
height at one point was discovered for the narrow wedge initial condition [SS10d, SS10a,
SS10b, SS10c, ACQ11]. In terms of Z, result reads the following.

Theorem 1.1. For the initial condition Z(x, 0) = δ(x), the Laplace transform of Z(0, t)
is written as the Fredholm determinant,

(1.3) E[exp(−Z(0, t)e
t
24

−(t/2)1/3s)] = det(1−Kt)L2(R+),

where the kernel is given by

(1.4) Kt(x, y) =

∫
R

Ai(x + λ)Ai(y + λ)

1 + e(t/2)1/3(s−λ)
dλ.

Here Ai is the Airy function.

Using this formula it is rather straightforward to do asymptoics and establish that the
limiting distribution of the free energy logZ(0, t) obeys the Tracy-Widom distribution
[TW94] in the large t limit.
In the kernel, we see the Fermi-Dirac factor of the form, 1/(1 + eβ(ϵ−µ)). This sug-

gests that this is related to a free fermion at finite temperature. See Appendix A. We
emphasize that the formula (1.3) with (1.4) had not been obtained through a direct
relation between the KPZ equation and a free fermion. In [SS10a, ACQ11], the formula
was first found by taking a limit for the results for the asymmetric simple exclusion
process(ASEP) by Tracy and Widom [TW09], which had been obtained by using Bethe
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ansatz. Soon afterwards the same formula was reproduced by using replica calcula-
tions, where the Lieb-Liniger model appears and is solved using again the Bethe ansatz
[CDR10, Dot10]. But direct connection between the KPZ models and free fermion at
finite temperature had not been established. A natural question ”Can we find a connec-
tion between the KPZ equation and a free fermion at finite temperature before getting
formulas by lengthy Bethe ansatz calculations?” had remained for more than a decade.

In [IMSa, IMSb], we found such a connection for discretized KPZ models. More pre-
cisely we found a bijection which connects the q-Whittaker measure and the periodic
Schur measure. The q-Whittaker measure has been known to be related to KPZ models
[BC14, BP16]. The periodic Schur measure is associated with a free fermion at positive
temperature [Bor07, BB19]. Then, using this connection, one can study KPZ models
associated with the q-Whittaker measure with standard machinery of free fermions. By
considering appropriate special and limiting cases, one can study various KPZ models
with free fermion techniques, including the KPZ equation itself. Hence we now have a
route to arrive at the formula (1.3) without going through Bethe ansatz calculations.
Applications of our new approach to KPZ models are discussed in [IMSc]. We remark
that a relation between discretized KPZ models and the Schur measure had been dis-
cussed by Borodin [Bor18], but it was through a matching of expectations and was not
directly related to a finite temperature free fermion.

In this article we explain our approach to KPZ models through free fermions at finite
temperature. We mainly focus on a particular example of finite temperature directed
polymer model known as the O’Connell-Yor polymer model [OY01].

The rest of this article is organized as follows. In the next section, we introduce
the O’Connell-Yor polymer model and state the Fredholm determinant formula for its
Laplace transform which appear from our approach. In section 3, the simpler case of
zero temperature is explained. In section 4, the relation to quantum Toda lattice and
Whittaker measure are explained. In section 5, we give a brief account of our results
on the q-PushTASEP, q-Whittaker measure and periodic Schur measure. A Fredholm
determinant formula for q-PushTASEP is presented. In section 6 we take appropriate
q → 1 limit of both sides of the identity to arrive at the formula presented in section
2. Conclusion is given in section 7. In Appendix A basics of determinantal point
process(DPP) and free fermions are given. In Appendix B, discrete directed polymer
at zero temperature and its relation to TASEP are explained.

2. O’Connell-Yor polymer

2.1. Model. The O’Connell-Yor polymer model is a directed polymer model defined
on semi-discrete setting (discrete space and continuous time), which was introduced by
O’Connell and Yor [OY01]. ConsiderN semi-infinite lines {(j, s), s ≥ 0}, j = 1, 2, . . . , N
and a path π which consists of segments (j, tj−1) → (j, tj), j = 1, 2, . . . , N − 1, 0 =
t0 < t1 < . . . < tN−1 < tN = t. One can regard π as a polymer which starts from (0, 0),
switches from the jth line to the (j + 1)th line at time tj for j = 1, . . . , N − 1, and
ends at (N, t), see Fig 1. Suppose each line is associated with a Brownian motion, Bj,
which are independent, and the polymer feels the potential energy from them on each
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Figure 1. The O’Connell-Yor polymer.

segment, s.t., the energy of the polymer is given by

(2.1) E[π] =
N∑
i=1

(Bi(ti)−Bi(ti−1)).

The partition function is given by

(2.2) ZN(t) =

∫
0<t1<...<tN−1<t

eβE[π]dt1 · · · dtN−1.

Here β = 1/kBT is the inverse temperature with kB the Boltzmann constant and T (> 0)
the temperature. In this article we set β = 1 except at the beginning of section 3 where
we discuss the zero temperature limit. ZN(t) is random because E[π] is.

One can introduce Zj(t), 1 ≤ j ≤ N by considering the first j lines in the above. By
Ito’s formula they satisfy

(2.3) dZj(t) = Zj−1(t)dt+ Zj(t)dBj(t),

where Z0(t) = 0 by convention and we interpret the product in the second term as Ito
type. In an appropriate continuous space limit, this becomes the directed polymer for
the KPZ equation (1.2).

2.2. Fredholm determinant formula for Laplace transform. The goal of this
article is to explain how our approach leads to the following Fredholm determinant
formula for the Laplace transform of ZN(t).

Theorem 2.1. For s ∈ R we have

(2.4) E[exp(e−sZN(t))] = det(1−K)L2(s,∞),

where

(2.5) K(x, y) =

∫
iR−d

dz

2πi

∫
iR+d′

dw

2πi

π

sin(π(w − z))

Γ(z)N

Γ(w)N
ew

2t/2−z2t/2+zx−wy,

with d, d′ > 0, such that 1
2N

< d′ + d < 1.

In a certain limit, (2.4) and (2.5) tend to (1.3), (1.4) for the KPZ equation. With this
formula, performing asymptotics is rather easy and one can establish the Tracy-Widom
distribution for the O’Connell-Yor polymer [BC14, BCR13]. See the discussion for the
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case of Log-Gamma polymer in [IMSc]. The formula of Theorem 2.1 seems new, though
a few related ones have been written for instance in [BC14, BCR13, IS17].

3. Zero temperature case

Before going to more details about the finite temperature polymer, we discuss the
simpler case of zero temperature in this section. They would be also useful to under-
stand the finite temperature case.

In the zero temperature (β → ∞) limit, the free energy becomes the ground state
energy,

(3.1) lim
β→∞

β logZN(t) = sup
π

E[π].

In [Bar01, GTW02], it was shown that this is related to Gaussian unitary ensemble
(GUE) from random matrix theory [Meh04, For10]. More precisely, supπ E[π] has the
same law as the largest eigenvalue x1 of GUE of size N , i.e.,

(3.2) P[sup
π

E[π] ≤ s] = P[x1 ≤ s].

The probability density function of N eigenvalues of GUE is written as

(3.3)
1

Z

∏
1≤j<k≤N

(xj − xk)
2

N∏
j=1

e−x2
j .

Here and in the following Z denotes a normalization constant and may differ from
one case to another. Using the multi-linearity of determinants, this can be rewritten

as 1
Z
det(ϕj(xk))

2 where ϕn(x) =
e−x2/2

π1/4
√
2nn!

Hn(x) and Hn(x) is the Hermite polynomial

[AAR99]. This can be understood as the probability density of N particles of free
fermions under harmonic potential in the ground state. See Appendix A. By the stan-
dard methods of DPP, the probability P[x1 ≤ s] is written as the Fredholm determinant,

(3.4) P[x1 ≤ s] = det(1−K)L2(s,∞),

where

(3.5) K(x, y) =
N−1∑
n=0

ϕn(x)ϕn(y).

Combining (3.2) and (3.4), we find

(3.6) P[sup
π

E[π] ≤ s] = det(1−K)L2(s,∞)

with K given by (3.5). This is nothing but the zero temperature limit of the relation
(2.4). Indeed the left hand side of (2.4) becomes the distribution function of the ground
state energy. In the right hand side Γ(z),Γ(w) are replaced by z, w and sinπ(w − z)
by π(w − z). The result is a well-known double contour integral formula of the kernel
(3.5).

One way to understand this relation between the polymer and the GUE is to consider
a Markov dynamics on a Gelfand-Tsetlin(GT) cone. See Fig. 2. In the continuous

setting, this may be considered as positions of particles x
(k)
i ∈ R, 1 ≤ i ≤ k ≤ N ,
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Figure 2. The Gelfand-Tsetlin cone as a triangular array.

satisfying the relations x
(k+1)
i+1 ≤ x

(k)
i ≤ x

(k+1)
i . We may consider a Markov dynamics

of these particles. First x
(1)
1 is a Brownian motion. Other particles are also Brownian

motions but they should satisfy the condition of the GT cone. If one focuses on x
(k)
k , 1 ≤

k ≤ N on the diagonal on the left edge of the GT cone, this is the minimum energy
minπ E[π] of the polymer up to the k-th level. On the top we have Dyson’s Brownian
motion, as shown in [War07], see also [Sas11, WW09]. At a fixed time they are the
GUE eigenvalues.

A similar discussion for discrete directed polymer models and its connection to
TASEP will be explained in Appendix B.

4. Relation to Whittaker measure

Now we come back to the discussion about the O’Conne-Yor polymer.

4.1. Gelfand Tsetlin dynamics for O’Connel-Yor polymer. In [O’C12], O’Connell
found a generalization of the Markov dynamics on the GT cone at zero temperature
in the previous section to the case of finite temperature. With Bk, k = 1, · · · , N in-

dependent Brownian motions, one can now consider F
(k)
i , 1 ≤ i ≤ k ≤ N satisfying

dF
(1)
1 = dB1 and

dF
(k)
1 = dF

(k−1)
1 + eF

(k)
2 −F

(k−1)
1 dt,

dF
(k)
2 = dF

(k−1)
2 + (eF

(k)
3 −F

(k−1)
2 − eF

(k)
2 −F

(k−1)
1 )dt,

· · ·

dF
(k)
k−1 = dF

(k−1)
k−1 + (eF

(k)
k −F

(k−1)
k−1 − eF

(k)
k−1−F

(k−2)
1 )dt,

dF
(k)
k = −dBk − eF

(k)
k −F

(k−1)
k−1 dt,(4.1)

for k = 2, . . . , N . One observes that F
(k)
k evolves autonomously. Moreover, if we

set Zk := e−F
(k)
k , they satisfy (2.3). Namely, the diagonal elements on the left edge

correspond to the O’Connell-Yor polymer. Notice that F
(k)
i do not have to satisfy the

interlacing conditions. It is satisfied only in the the zero temperature limit, in which
the dynamics reduces to the one in the previous section [O’C12].
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4.2. Quantum Toda lattice and Whittaker measure. In section 3, we saw that,
in the zero temperature case, the top particles evolve as the Dyson’s Brownian motion.

Remarkably in [O’C12], it was shown that the top particles {F (N)
k , 1 ≤ k ≤ N} of (4.1)

also evolve autonomously with some generator denoted by L. It was further shown
that, by a similarity transformation, L is mapped to a self-adjoint operator H, given
by

(4.2) H = −
N∑
i=1

∂2

∂x2
i

+
N−1∑
i=1

exi+1−xi ,

which is nothing less than the Hamiltonian of the quantum Toda lattice. For the
classical case, the Toda lattice is one of the most well known and important integrable
systems. It has soliton solutions and has a number of applications to several real
physical systems [Tod89]. The quantum version has been less studied but is known to
possess rich and nice properties. As is clear from the Hamiltonian in (4.2), there are
interaction between neighboring particles through exponential potential. The system
is clearly not free. But the quantum Toda lattice is known as a quantum integrable
system. It can be solved by Bethe ansatz and there is a set of operators including the
Hamiltonian which mutually commute.

The eigenfunctions of the quantum Toda lattice are known. They are called the
Whittaker function Ψλ(x) with x ∈ RN , λ ∈ RN and satisfy

(4.3) HΨλ(x) =

(
N∑
j=1

λ2
j

)
Ψλ(x).

The probability density of the particles on the top line in the GT dynamics above
can be written in terms of the Whittaker function. This measure on RN is called the
Whittaker measure and is written in the form,

1

Z
Ψ0(x)θt(x).(4.4)

The other function θt is a ”dual” Whittaker function given by

(4.5) θt(x) =

∫
(iR)N

dλ ·Ψ−λ(x)e
∑N

j=1 λ
2
j t/2sN(λ),

where sN(λ)dλ is the Sklyanin measure,

sN(λ) =
1

(2πi)NN !

∏
i<j

sin π(λi − λj)

π

∏
i>j

(λi − λj) .(4.6)

See remark at the end of 5.1. In the zero temperature limit, the measure tends to the
GUE measure (3.3), see Sec.6 in [O’C12].

4.3. O’Connell-Yor polymer and Whittaker meaure. Using the fact that ZN(t)
is also x1 in the Whittaker measure, one can write down a formula [O’C12],

(4.7) E[exp(−e−sZN(t))] =
1

Z

∫
RN

e−ex1−s

Ψ0(x)θt(x)dx.
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Corresponding to the fact that the quantum Toda lattice is not a free system, there
is no known formula as a single determinant for the Whittaker function. Contrary
to the zero temperature case, one can not apply the machinery of DPP. But using
the integrability of the Toda lattice, one can do various calculations and arrive at a
Fredholm determinant formula. See for example [BC14, BCR13, IS16].

5. q-Whittaker measure and periodic Schur measure

After the formula (1.3) was discovered for the KPZ equation, various generalizations
were achieved. The most successful direction was to find and solve discrete KPZ mod-
els. Many new models were invented and solved such as the q-TASEP, ASEP, q-Hahn
TASEP[BC14, BCS14]. The notable one was the stochastic higher spin six vertex model
[CP16], which turns out to contain most of the known models as special and limiting
cases. What has turned out was that most models are related to the q-Whittaker mea-
sure. (Some models are more directly related to the Hall-Littlewood measure, but here
we do not make a clear distinction between them because the latter may be realized as
a particular specialization of the former. See discussions in section 2.4 of [IMSc].) The
connection between the KPZ models and the q-Whittaker measure is seen through the
branching rule of q-Whittaker function, in a similar way as the O’Connell-Yor poly-
mer is related to the Whittaker measure as explained in the previous section. The
q-Whittaker function is again not written as a single determinant and is not directly
related to a free fermion system. But using the Bethe ansatz or Macdonald operator,
one can study the q-Whittaker measure exactly, and one obtains a Fredholm determi-
nant for discrete KPZ models [BC14, BCS14]. But asymptotics is somewhat involved
and half-space case has been difficult to analyze.

In [IMSa, IMSb], we have succeeded in finding a bijective connection between the
q-Whittaker measure and the periodic Schur measure. The latter is related to a free
fermion at positive temperature. Then one can study the KPZ models related to the q-
Whittaker measure by the standard techniques for free fermion systems. In this section
we briefly review this connection.

5.1. q-TASEP and q-Whittaker measure. The most relevant KPZ model in the
discussion is the q-PushTASEP, introduced in [MP17]. This is a generalization of the
discrete time TASEP, see Appendix B, and is also in the KPZ class. The dynamical
rules of this model is rather involved and we do not explain them here. The most
important property of the q-PushTASEP in our discussion is that the position of the
N -th particle has the same distribution as N plus µ1 in the q-Whittaker measure of the
form,

(5.1)
1

Z
Pµ(a)Qµ(b),

where Pµ(a) and Qµ(a) are q-Whittaker functions and they are related by Qµ(a) =
bµ(q)Pµ(a) with bµ(q) = 1/

∏
i≥1(q; q)µi−µi+1

. In an appropriate q → 1 limit, Pµ tends
to the Whittaker function. In this limit the simple relation between Pµ and Qµ is lost
but one can check Qµ tends to θt in (4.5). See Remark 4.1.17 in [BC14].
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5.2. Periodic Schur measure. Periodic Schur measure was introduced by Borodin
in 2007 in [Bor07] and is written in the form,

(5.2)
1

Z

∑
ρ∈P,ρ(⊂λ)

q|ρ|sλ/ρ(a)sλ/ρ(b),

where sλ/ρ is the skew Schur function. This is not a DPP but its shift mixed version
(λi → λi + S) with

P(S = ℓ) =
tℓqℓ

2/2

(q; q)∞θ(−tq1/2)
, ℓ ∈ Z, for t > 0(5.3)

with θ(x) = (x; q)∞(q/x; q)∞, is a DPP. Later Betea and Bouttier reformulated the
periodic Schur measure in terms of free fermion at finite temperature [BB19].

5.3. Relation of the two measures. While the q-Whittaker measure in 5.1 is not a
DPP, the periodic Schur measure in 5.2 is. As such apparently there seem no relation
between the two measures. However, in [IMSa, IMSb], we found that there is a clear
and solid relation between the two measures.

Theorem 5.1. Let E denote the expectation with respect to the q-Whittaker measure
(5.1) and P the probability measure with respect to the periodic Schur measure (5.2).
The following equivalence holds:

E
[
1/(−tq

1
2
+n−µ1 ; q)∞

]
= P(λ1 + S ≤ n).(5.4)

This means that one can study the distribution of a particle in q-PushTASEP by free
fermions at positive temperature.

The theorem was first proved by matching the Fredholm determinants of both hand
sides in [IMSa]. But in [IMSb] we gave a completely different combinatorial proof
without using Bethe ansatz type calculations. In terms of the q-Whittaker and skew
Schur function, the relation (5.4) is equivalent to the following identity,

(5.5)
n∑

ℓ=0

qℓ

(q; q)ℓ

∑
µ:µ1=n−ℓ

bµ(q)Pµ(a)Pµ(b) =
∑

λ,ρ:λ1=n

q|ρ|sλ/ρ(a)sλ/ρ(b).

5.4. Bijective proof in [IMSb]. In Appendix B, it was explained that the TASEP is
related to the Schur measure by using RSK correspondence and that the Schur function
appears when one takes a sum over semi-standard Young tableaux with a given shape.
A similar idea may be applied here to prove (5.5) bijectively.

A combinatorial formula for the skew Schur function on the right hand side is well
known and reads

(5.6) sλ/ρ(x) =
∑

T∈SST(λ/ρ)

xT ,

where xT =
∏

i x
#i in T
i and SST(λ/ρ) is the set of skew semistandard tableaux with

skew shape λ/ρ. For the q-Whittaker function on the left hand side, a definition using

9



New approach to KPZ models through free fermions at positive temperature

branching rule is commonly used in the field but there is a combinatorial formula due
to [San00], which turns out to be useful in our discussion. Its reads

(5.7) Pµ(x) =
∑

V ∈VST(µ)

qH(V )xV ,

where VST(µ) is the set of ”vertically strict tableaux” with increasing elements in each
column and no condition among columns. H(V ) is the energy function depending on a
VST V [NY97]. We do not give a precise definition here but roughly it measures how
far the VST V is from a semi-standard tableaux.

Theorem 5.2. There is a bijection Υ : (P,Q) ↔ (V,W, κ, ν) where (P,Q) is a pair of
skew SSTs with same shape λ/ρ, (V,W ) is a pair of VSTs with same shape µ, ν is a
partition and

κ ∈ K(µ) = {κ = (κ1, . . . , κµ1) ∈ Nµ1

0 : κi ≥ κi+1 if µ′
i = µ′

i+1}.

The bijection Υ has the weight preserving property,

(5.8) |ρ| = H(V ) +H(W ) + |κ|+ |ν|.

Once we establish this theorem, showing (5.5) is rather simple by noting
∑

κ∈K(µ) q
|κ| =

bµ(q) and P[ν1 = ℓ] = qℓ

(q;q)ℓ
(q; q)∞.

In [IMSb], the bijection was constructed by introducing a deterministic time evolution
as iterations of skew RSK maps introduced by Sagan and Stanley in [SS90]. We call this
the skew RSK dynamics. According to this dynamics, a pair of skew tableaux (P,Q)
evolves into a different pair of the same shape. After long time, it shows particular
property that all columns proceed with fixed speeds, which resemble solitons in Box
and Ball systems [TS90, IKT12].

To give an actual proof of the bijection based on the rules of RSK correspondence
seems difficult. In [IMSb] we employed the theory of crystal [Kas90, Kas91, Lus90]
to study systematically properties of skew RSK dynamics. We found that a novel
realization of affine crystal commutes with the skew RKS dynamics and allows us to
study it through a particularly simple tableaux for which the dynamics is linearized.
In this short article we do not go into more details. An interested reader is invited to
read [IMSb], in particular its introduction at first.

5.5. Fredholm determinat formula for q-PushTASEP. As already mentioned,
the periodic Schur measure is associated with a free fermion at finite temperature and
its shift mixed version is a DPP. By standard methods, one can write down a Fredholm
determinant formula for the distribution of λ1. It reads

(5.9) P[λ1 + S ≤ s] = det(1−K)ℓ2(Z>s),

where

(5.10) K(x, y) =
1

(2πi)2

∮
|z|=r

dz

zx+1

∮
|w|=r′

dw

w−y+1

N∏
i=1

(aiw; q)∞
(aiz; q)∞

M∏
j=1

(bi/z; q)∞
(bi/w; q)∞

κ(z, w),
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where x, y ∈ Z and

(5.11) κ(z, w) =

√
w

z

(q; q)2∞
(w/z, qz/w; q)∞

ϑ3(ζz/w; q)

ϑ3(ζ; q)
.

Here ϑ3 is the theta function. The integration contour’s radii satisfy 1 < r/r′ < q−1 and
bmax ≤ r, r′ ≤ 1/amax. Combining this with (5.4), one finds a Fredholm determinant
formula for the distribution of the position of the N -th particle in q-PushTASEP. It is

(5.12) E
[
1/(−tq

1
2
+n−µ1 ; q)∞

]
= det(1−K)ℓ2(Z>s),

where K is given by (5.10). Asymptotics is also standard.

6. Application to O’Connell-Yor polymer

By taking appropriate q → 1 limits of both sides in (5.12), we can arrive at the Fred-
holm determinant formula for the Laplace transform for the O’Connell-Yor polymer,
given in (2.4).

6.1. From q-Push TASEP to O’Connell-Yor polymer. On the left hand side, we
consider q → 1 limit of q-PushTASEP. In fact one can arrive at the O’Connell-Yor poly-
mer in two steps. First one takes a certain q → 1 limit to get the Log-Gamma polymer
model, as discussed in [MP17]. This is another finite temperature directed polymer
on a lattice with the energy on each site obeys the log-Gamma distribution. Then if
one takes an appropriate continuous limit in one direction, one finds the O’Connell-Yor
polymer. In the same limit the q-Laplace transform in the left hand side of (5.12) tends
to the Laplace transform.

6.2. Limit of the Fredholm determinant. We take the corresponding q → 1 limit
for the Fredholm determinant on the right hand side of (5.12). The limit to the formula
for the Log-Gamma polymer was already studied in [IMSc]. The kernel for this case is

very similar to (2.5) with ez
2t/2−w2t/2 replaced by (Γ(B − z)/Γ(B − w))M . It is easy to

check that in the corresponding limit this tends to the ratio of the Gaussian.

7. Conclusion

In this article, we have given a short explanation of our new approach to study KPZ
models initiated recently in [IMSa, IMSb, IMSc]. It uses a bijective correspondence
between the q-Whittaker measure and the periodic Schur measure, which is associated
with a free fermion at finite temperature. Compared to the standard approach using
Markov duality and Bethe ansatz, our method has the advantage that Fredholm deter-
minant formulas are obtained by standard machinery of DPPs without going through
involved calculations. The kernel has a clear relation to the free fermion and its asymp-
totics can be studied straightforwardly.

In this article, we mainly focused on a particular directed polymer model, O’Connell-
Yor polymer, but we emphasize that our approach is applicable to all solvable KPZ
models which are associated with q-Whittaker measures. For example, the asymmetric
simple exclusion process (ASEP), which is the best known model in the KPZ class,

11
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can be studied by our methods, because the ASEP is known to be related to the Hall-
Littlewood measure [BBW18], and the Hall-Littlewood function may be understood as
a particular specialization of the q-Whittaker function.

One of the biggest advantages of our approach compared to conventional ones is that
one can also study half space models in a parallel fashion. Compared to models in full-
space, half-space models have turned out to be difficult to handle with the conventional
methods[BBCW18, BBC20]. In particular the proof of the liming distribution for the
case of KPZ equation has not been given. In our approach, we can study half-space
models by putting a symmetry on our bijection, similarly to the zero temperature case
[BR00], and establish the limit theorems for the KPZ equation in [IMSc].

There are still many possible directions to develop this new approach. Studying
other statistics such as multi-point joint distributions is one of the most important
issues. Understanding similarity and relation to classical discrete integrable systems
such as the Box and Ball systems would be also very interesting.
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Appendix A. Determinantal point process and free fermions

A.1. Determinantal point process. A determinantal point process (DPP) is a point
process for which k point correlation functions are written in the form of determinant,

(A.1) det(K(xi, xj))1≤i,j≤k,

for all k with the same kernel K(x, y), called the correlation kernel. The distribution
of the right most particle is written as a Fredholm determinant,

(A.2) P[x1 ≤ s] = det(1 +K)

with the same correlation kernel. See for instance [Sos00, ST03, Bor09].

A.2. Free Fermions. A free fermion is a quantum many (infinite) particle system for
which each one particle state ϕn(x) (n ≥ 1, energy ϵn) can be either occupied or empty
(Pauli principle).

At T = 0, for N particles, the ground state filling n = 1, . . . , N is realized. The
measure of particle positions is given by

(A.3)
1

Z

(
det(ϕn(xm))

N
n,m=1

)2
.

The position of particles form a DPP, with correlations described by the kernelK(x, y) =∑N
n=1 ϕn(x)ϕn(y).
In a system with a positive temperature T > 0, the state n is filled with prob

1
1+eβ(ϵn−µ) , β = 1

kBT
. The position of particles form again a DPP, with its correlation

kernel now given by K(x, y) =
∑∞

n=1
ϕn(x)ϕn(y)

1+eβ(ϵn−µ) .

12
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Appendix B. Discrete polymer model at zero temperature and TASEP

In this appendix we explain a discrete analogue of the directed polymer at zero
temperature. The connection to TASEP is also mentioned.

B.1. Discrete directed polymer. Here we consider a discrete analogue of the rela-
tions explained in section 3. Let us now consider a rectangle of size N ×M with grids
of unit length. On all lattice sites we put independent random variables and the ran-
dom variable on site (j, k) is a geometric random variable with parameter ajbk where
aj, bk > 0, 1 ≤ j ≤ N, 1 ≤ k ≤ M . We consider an up-right path starting from (1,1)
and end at (N,M) and regard it as a directed polymer in random environment. The
energy of the polymer is a sum of the random variables along the polymer. At zero
temperature, we are interested in the maximal energy,

(B.1) GN,M = max
up-right paths from

(1,1)to(N,M)

( ∑
(i,j)

on a path

wi,j

)
.

A sample of a collection of random variables on the rectangle can be regarded as
a matrix of size N × M whose elements are non-negative integers. The Robinson-
Schensted-Kunuth (RSK) correspondence [Ful97, Sta99, Sag00] tells us that there is a
bijection between such a matrix and a pair (P,Q) of skew Young tabuleaux with the
same shape. Besides, in this correspondence, GN,M is equal to λ1. We are interested in
the distribution of GN,M , which after the RSK correspondence, corresponds to taking
sum with the restriction on the length of λ1. The sum over semi-standard tableaux
with a given shape appearing in this correspondence exactly matches the well-known
combinatorial definition of the Schur function,

(B.2) sλ(a) =
∑

T∈SST(λ)

aT ,

where aT =
∏

i a
#i in T
i and SST(λ) is the set of semistandard Young tabuleaux with

shape λ. We find

(B.3) P[GN,M ≤ u] =
1

Z

∑
λ,λ1≤u

sλ(a)sλ(b).

For the Schur function there exists a different expression as a single determinant,
known as the Jacobi-Trudi formula, which reads sλ(a) = det(hλi−i+j(a)), with hn the
complete homogeneous symmetric polynomial. Then the Schur measure is DPP as-
sociated with a free fermion at zero temperature. Then using the standard methods
of DPP, the probability can be written as a Fredholm determinant and by doing as-
ymptotic analysis one can prove that the limiting law is the Tracy-Widom distribution
[Joh00].

By taking a certain limit for the model, one can consider a directed polymer with
exponential distributions. One can further take a continuous limit in one direction in
which a sequence of random variables becomes a Brownian motion, to get the O’Connell-
Yor polymer at zero temperature. From the discrete directed polymer one can take

13
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· · · ~⇒
1− r

~ ~⇒
1− r

~ · · ·

-3 -2 -1 0 1 2 3

Figure 3. TASEP

another limit, in which one now considers a rectangle of continuous coordinates on
which some number of points are Poisson distributed.

B.2. TASEP. Here we mention that the discrete direct polymer is intimetely related
to totally asymmetric simple exclusion process (TASEP). In a discrete time version of
TASEP with parallel update, at each time step, each particle on Z tries to hop to the
right neighboring site with probability 1− r, 0 < r < 1, if the target site is empty. See
Fig. 3. Let us take the step initial condition in which all non-positive sites are occupied
and positive sites are empty at t = 0, and consider the integrated current N(t) at (0, 1)
up to time t, namely the number of particles on positive sites at time t.

Let wi,j denote the waiting time for the j-th particle to make the i-th hop since the
target site becomes empty. They are independent and identically distributed random
variables obeying geometric distribution with parameter r. These wi,j’s are nothing
but the random environments for the polymer explained above where all ai’s and bj’s.
In this correspondence we have P[GN,N ≤ u] = P[N(t) ≥ N ] [Joh00]. For a more
pedagogical account, see for instance [Sas07].

One can consider a few limits. First one can consider continuous time version of
TASEP, which is more standard in probability theory and statistical mechanics. In the
language of polymer, this corresponds to the case of exponential weight. Corresponding
to the piecewise linear Poisson polymer, there is another KPZ model known as the PNG
model. This is related to standard Young tableaux.

The relation between TASEP and Schur measure can be also seen in terms of Gelfand-
Tsetlin pattern, see [WW09].
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